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Abstract. In this paper, we present a method for treating in a general manner the coupling
between a single electron and boson fields represented by harmonic oscillators. The (general)
solution of the corresponding many-body Schrödinger equation in real space is obtained by means
of a propagation matrix method without using anyansatzfor the many-body wave functions.
We study the particular case of coupling between electrons and surface plasmons in tunnelling
junctions. The electron is coupled inside the tunnelling barrier to a few surface plasmon modes.
We present results for the dynamical effective potential felt by an electron tunnelling in model
one-dimensional tunnelling junctions as well as for the various traversal times. As expected,
significant differences from the corresponding static image potential are obtained when the
tunnelling timesτ are shorter than the characteristic response time of the surface charge (i.e. the
inverse of the surface plasmon frequencyω). Examples of such dynamical effective potentials
are given for various typical tunnelling conditions in the presence and absence of an applied
bias voltage. The behaviour of the potential is studied versus the tunnelling timesτ . It is also
shown that the apparent barrier height that can be deduced from experiments does not always
contain useful information about the dynamics of the coupled electron–plasmon system. On the
other hand, the absolute values of the current in the tunnelling junctions are strongly dependent
on the characteristic parameters of this dynamics.

1. Introduction

For a given geometry and tip–sample separation, the actual conductance of a scanning
tunnelling microscope (STM) junction (or in general any tunnelling junction) depends
crucially on the potential felt by the electrons. A substantial contribution to this potential
depends on the extent to which the tunnel junction is polarized by the electron’s field. As
is well known, if tunnelling is sufficiently slow in comparison to the characteristic response
time of the electrodes (i.e. the inverse of the corresponding surface plasmon frequency),
the electron will feel the classical ‘image force’ potential. If the tunnelling is very rapid,
however, the redistribution of the charge around the junction cannot occur sufficiently rapidly
to build up the image charge. These dynamical effects can alter drastically the shape of
the effective potential felt by the tunnelling electrons and therefore also the values of the
tunnelling current.

To our knowledge, the first experimental evidence of the image potential effects on the
conductance in a STM junction were pointed out by Binniget al [1]. The authors used a
static model for the image potential to interpret their data. This model cannot determine

0953-8984/98/173697+22$19.50c© 1998 IOP Publishing Ltd 3697



3698 H Ness and A J Fisher

in which regime the dynamical effects on the potential are important. Furthermore, it is
not obvious that the observed modifications of the STM conductance are mainly due to the
effects of the image potential. They may also arise from the strong interaction between the
electronic states of the tip and the sample when their separations are small.

More recently the interaction between tunnelling electrons and localized plasmon modes
has been investigated by Berndtet al [2, 3]. These plasmon modes are induced by the
proximity of the tip to the surface and are spatially confined. Their energy distribution can
be observed via photon emission from the STM junction. In another class of experiments,
evidence of dynamical effects in the image potential has been found in the conductance of
semiconductor heterojunctions, especially in the case of tunnelling through thin and low
tunnelling barriers [4].

On the other hand, the dynamical aspects of the image potential have also been studied
theoretically by several authors within different approaches and approximations. Different
classical treatments have been proposed; for example, Ray and Mahan determined self-
consistently the image potential with the finite velocity of the electron treated as a classical
particle [5]. However, for a more realistic description, quantum mechanical treatments of
the dynamic image potential are necessary. Different types of approach have been used.
They can essentially be classified into three groups: perturbation theory for the electron–
plasmon coupling terms [6], the self-energy formalism and the path integral formalism.
Within the self-enery formalism, Inkson derived analytical expressions of the Green’s
functions and the screened Coulomb potential for non-tunnelling electrons [7]. Green’s
functions and the resulting energy-dependent image potential have been determined by
non-self-consistent calculations in the local and non-local limit for the Green’s function
[8–10], by self-consistent calculations in the local limit [11, 10] and by fully self-consistent
calculations [12, 13]. To our knowledge, the first important contribution to a path integral
formulation of the dynamic image potentials was given by Young [14]. In their spirit, all
of the path integral methods are similar to the approach adopted by Caldeira and Leggett
for calculating the tunnelling probability of a particle coupled to a heat bath [15, 16]. The
same formalism has been used by Persson and Baratoff to study inelastic tunnelling and
the corresponding dynamic image potential [17, 18]. The formalism has been corrected by
Sebastian and Doyen to account for the correct boundary conditions and the fact that it
is not possible to transfer arbitrary amounts of energy to the plasmons [19, 20]. Finally,
Klipa and Šunjíc recently generalized the previous path integral formalisms to go beyond
the high-plasmon-frequency limit [21].

Despite the existence of this literature on the dynamical image potential, there is still a
need to develop a general method to treat the coupling of electrons with harmonic modes
(for instance the surface plasmon modes). The aim of this paper is to point out that this class
of problems can be effectively solved by the method of Bonča and Trugman [22] whenever
the interaction with the harmonic modes is localized in some region. The method should
not rely on the analytical knowledge of the essential quantities like the wave functions or
the Green’s functions. This means that it should work, in principle, for any shape of the
nominal static potential barrier and for situations not limited just to the tunnelling regime.
We do not want to introduce anyansatzfor the form of the many-body wave functions
that will assume any particular dynamical correlation between the electron position and
displacements of the harmonic modes. It should be possible to include virtual as well as
real excitations of the harmonic modes. And finally, the model should enable us to separate
the different contributions (elastic and inelastic processes) to the current in the region of
space considered, which cannot be done with the existing path integral models.

For this purpose, we develop a matrix method to solve the corresponding many-body
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Schr̈odinger equation on a real-space mesh where a single electron interacts with harmonic
modes ‘located’ in the region of space of interest. At first sight, our model has some
resemblance to the models used by Puri and Schaich [23] or Tagliacozzo and Tosatti
[24]. But the present model generalizes the former studies by considering a more realistic
description for the harmonic modes and for their coupling matrix elements to the electron
in the junction considered.

The paper is organized as follows. In section 2 we describe the type of Hamiltonian
used to treat the coupling between the electron and the surface plasmon. We also give
the expressions for the surface plasmon frequencies and the matrix elements describing the
coupling to the electron. We outline the method for solving the many-body Schrödinger
equation (section 2.2). Details of the propagation matrix method that we use are given in
the appendix. We derive the expression for the local, energy-dependent, effective dynamical
potential (section 2.4). In sections 3.1 and 3.2, results for typical tunnelling conditions are
presented for the partial and total transmission amplitudes and currents. The dependence of
the dynamical effective potential upon the plasmon frequencies, the tunnelling energies and
the applied bias are considered in section 3.3. A quantitative study of the corresponding
tunnelling times is performed in section 3.4. We discuss the variation of the apparent barrier
height for different tunnelling conditions in section 3.5. Finally in section 4, we summarize
the most significant results that we have obtained, and discuss improvements and other
potential applications of the method.

2. Model for the tunnelling barrier

2.1. The electron–surface plasmon coupling

We consider a model case where an electron tunnels through a static barrierV between two
planar metallic surfaces. The metallic electrodes are described by a local scalar dielectric
function. Within the tunnelling barrier (06 z 6 L), the electron is coupled only to the
surface plasmon (SP) modes. Each mode, of frequencyων and coupling matrix element0ν ,
is characterized by a composite indexν = (q, α) whereq is a vector parallel to the electrode
surfaces andα = (±) represents the even and odd SP modes. These modes correspond to
the in-phase and out-of-phase oscillation of the charge on the two electrode surfaces. The
expressions for the frequencies and the coupling elements are (in atomic units) [25, 21]

ων = ωq,α = ωs
√

1+ αe−qL (1)

and

0ν = 0q,α(z) =
√

2πω2
s

Aqωq,α

eq(z−L) + αe−qz

2
(2)

whereA is the surface area of the unit cell andωs is the surface plasmon frequency, related
to the bulk plasmon frequencyωp by the usual relation (ωs = ωp/

√
2).

The Hamiltonian for the model consists of three terms: a purely electronic term (the
kinetic energy operator and the static barrierV ), the energy of the SP modes and the term
describing the coupling between the electron and the potential generated by the surface
charge oscillations (SP modes). The coupling to the SP modes is taken to be linear in the
coordinates of the plasmons. The translational invariance parallel to the electrode surfaces
allows us to write a one-dimensional Hamiltonian for the model system when only the
motion of the electron perpendicular to the electrode surfaces is considered. Furthermore,
on discretization of real space, the electron kinetic energy operator− 1

2∇2
z f (z) becomes
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− 1
2(f (zj+1) − 2f (zj ) + f (zj−1))/1

2 (1 being the grid spacing in thez-direction). Then,
the corresponding Hamiltonian is written (in atomic units) as

H =
∑
j

εj c
†
j cj +

∑
j,k

βj,k(c
†
j ck + HC)+

∑
ν

ωνb
†
νbν +

∑
j,ν

0ν(zj )c
†
j cj (bν + b†ν) (3)

whereb†ν andbν (c†j andcj ) are the creation and annihilation operators of the SP modes (of
the electron at sitej ), βj,k = −(1/212)δk,j+1 and εj = V (zj ) + 1/12. The basis vectors
when a single electron is present are of the form|j, nν1, nν2, . . .〉 ≡ |j, {nν}〉, where each
harmonic modeν containsnν = 0, 1, 2, . . . quanta. The main difficulty is that of determining
the many-body wave functions of equation (3) inside the barrier without making anyansatz
about the form of such wave functions, such as a separation between the harmonic part
and the real-space part of the wave functions [26, 27]. In the present model, we want
to retain fully the dynamical correlation between the tunnelling electron and the plasmon
displacements.

2.2. A way to solve the Schr¨odinger equation

The Schr̈odinger equation for the Hamiltonian equation (3) can be solved for a given energy
E following the procedure of Boňca and Trugman [22]. In this approach, the many-body
problem is mapped exactly onto a one-body problem with many channels. The Schrödinger
equation is then solved for the one-body problem. The problem is not solved as a standard
eigenvalue–eigenvector system, since the eigenvalueE is known in advance. Essentially
any problem can be solved with this method when a single electron tunnels and when
the many-body interactions are limited to a finite region of space. These conditions are
fulfilled for the model junction where the electron is coupled to the SP modes only inside
the tunnelling barrier.

The different channels correspond to the incoming and backscattered waves on the left-
hand electrode and the outgoing (transmitted) waves on the right-hand electrode. Each
channel is characterized by a set of occupation numbers{nν} for the harmonic modesν.
We consider only one incident electron, in a plane wave coming from the left, in the elastic
channel. These are the physically relevant boundary conditions, since we normally consider
the regime for whichkBT � h̄ωp and no plasmons are present before the electron arrives.
In the elastic channels (left-hand and right-hand electrodes), all of the harmonic modes are
in the ground state, i.e.nν = 0 for all modesν (also denoted the{nν} = {0} channels)
in contrast to the inelastic channels for which some modes are excited. Then the solution
of the Schr̈odinger equation for the energyE is obtained by expanding the wave functions
9(zj , E) at a sitej inside the barrier as

9(zj , E) ≡ 9j(E) =
∑
ν

aj,{nν }|j, {nν}〉 (4)

where the coefficientsaj,{nν } are complex numbers. Note thatj = 0 (M) corresponds to the
left-hand (right-hand) side of the barrier i.e.z = 0 (L = M1).

Outside the barrier, no electron–SP couplings are considered and only the first three
terms in the Hamiltonian equation (3) remain. The solutions of the corresponding
Schr̈odinger equations in the left-hand and right-hand electrodes give the dispersion relations
for the wave vectors:

E = εL,R + 2β cos(k{0}L,R1) for the elastic channels (5)

and

E −
∑
ν

nνων = εL,R + 2β cos(k{nν }L,R1) for the inelastic channels. (6)
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We have assumed that the static potentials inside the left-hand and right-hand electrodes
(definingεL,R) are constant. This will be the case inside metals because of their characteristic
short screening lengths.

With the above boundary conditions, the incoming and outgoing channel wave functions
are described by

aLj,{nν } =
 eik{0}L 1j + r{0}e−ik{0}L 1j (elastic channel)

r{nν }e
−ik{nν }L 1j (inelastic channels)

for the left-hand electrode (i.e.j 6 −1) and

aRj,{nν } = t{nν }eik{nν }R 1j (all of the channels) (7)

for the right-hand (i.e.j > M + 1) electrode. The complex coefficientsr{nν } and t{nν } are
the reflection and transmission coefficients for each channel. Note that when the energy lies
outside the band energies defined by equation (5) and equation (6), the corresponding channel
is not propagating. Instead, we take exponentially decaying wave functions of the form
exp(q{nν }L 1j) and exp(−q{nν }R 1j) for the left-hand and right-hand electrodes respectively.

On solving the Schr̈odinger equation for sitej = −1 (site j = M + 1), the reflection
(transmission) coefficients are related to the wave-function coefficientsaj=0,{nν } (aj=M,{nν })
at the barrier edges. The relations are

r{0} = −1+ a0,{0} and r{nν } = a0,{nν } (8)

and

t{nν } = e−ik{nν }R 1MaM,{nν } (9)

(in the case of non-propagating channels, the complex exponential is replaced by the
corresponding decaying exponential).

Taking into account the boundary conditions, the problem becomes equivalent to solving
a complex linear system of the formMa = d where the components of vectora are the
aj,{nν } coefficients andd is proportional to the imaginary part of the incident wave function
in the left-hand elastic channel. The matrixM is by definition a sparse matrix, so algorithms
for large sparse systems can be used. However, the solution of this linear system becomes
numerically unfeasible when one considers a large number of sites inside the barrier and
a large number of different harmonic modesν (with a lot of different possible occupation
numbersnν). This numerical problem can be substantially reduced by considering the
propagation of the wave-function coefficients through the barrier. Introducing the vectors
aj whose components are the wave-function coefficients on the different sitesj , simpler
tight-binding matrix equations can be derived from equation (3). These coupled equations
can be solved in principle by a propagation matrix method [28], by a scattering matrix
method [29] or by a recursion ratio matrix method [30]. In appendix A, we present a
propagation matrix method for solving the problem. All of the results presented in this
paper have been calculated with this method.

2.3. Reduced parameter space

The size of the parameter space (i.e. the size of the set{nν} of the occupation numbers) can
be reduced further under certain conditions. When the voltage between the two electrodes
is small (a few volts as in standard experimental conditions), there is only virtual excitation
of the SP because of the high value of the SP frequency [19]. Then the essential physics of
the problem will be given by the states with the lowest occupation numbers. This situation
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corresponds to the weak-coupling limit considered by Puri and Schaich [23] for which the
extent of the virtual excitation of the plasmon modes is bounded. Their method is similar
to but less general than the method that we use in the present work.

When the energyE is large, it is possible to have real excitations of the plasmon modes
which will correspond to propagating channels for the excited modes in the right-hand
electrode. However, one can no longer speak about electron tunnelling in such conditions,
so this regime is not relevant for STM.

On the other hand, the summation over theν = (q, α) index in equation (3) goes in
principle to an infinite value forq. The SP modes decay into single-particle excitations for
largeq, so a cut-off wave vectorqc can be introduced in the summation.

Although the method described in sections 2.1 and 2.2 is valid for the most general
situations, we consider in this paper a model case corresponding to a reduced parameter
space, i.e. the electron inside the tunnelling barrier is interacting with only two possible
SP modes. One value for theq-vector is chosen and associated with the modes whose
frequency is given by equation (1), and the coupling matrix elements are now chosen to
be [31]

0q,α(z) =
√
ω2
s

ωq,α

eq(z−L) + αe−qz

2
. (10)

We also drop for simplicity the normalization versus the unit surface areaA. Then, the
wave-function coefficientsaj,{nν } inside the barrier are of the formaj,n,m wheren andm are
the occupation numbers of the evenωq,(+) and oddωq,(−) SP mode respectively.

Note finally that it is possible to rederive equation (3) for a three-dimensional system.
For planar interfaces, the use of cylindrical coordinates and a Bessel transform is useful for
decomposing the wave functions and surface charge oscillation modes according to their
symmetry about a cylindrical axis. This extension to the present model will be considered
in a forthcoming paper. Furthermore, for a more realistic description of the STM junctions,
the corresponding surface plasmon frequency and coupling matrix elements can be derived
from classical electrostatics [32].

2.4. The effective potential

In order to study in detail the dynamical aspects of the image potential for the present
model, an expression for the effective electron potentialVeff has to be determined. Within
the present formalism a natural way of proceeding is to defineVeff as the local (energy-
dependent) potential

Veff(z, E) = 〈9(z,E)|V̂eff|9(z,E)〉ν
〈9(z,E)|9(z,E)〉ν (11)

where

V̂eff = V +
∑
ν

ωνb
†
νbν +

∑
ν

0ν(bν + b†ν).

The inner product in equation (11) goes only over the plasmon modes; no integration over
the electronz-coordinate is implied. ThenVeff(zj , E) can be written as

Veff(zj , E) = V (zj )+ Ve−SP(zj )
/∑

ν

∑
{nν }
|aj,{nν }|2 (12)
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where

Ve−SP(zj ) =
∑
ν

∑
{nν }

{
nνων |aj,{nν }|2+ 0ν(zj ) 2

∑
{mν }

Re [a∗j,{mν }〈j, {mν}|b†ν |j, {nν}〉aj,{nν }]
}
.

(13)

This potential contains all of the dynamical effects of the response of the surface plasmon
due to the presence of an electron in the tunnelling barrier. For the reduced parameter space
introduced in section 2.3,Ve−SP becomes

Ve−SP(zj ) =
∑
n,m

(nωq,(+) +mωq,(−))|aj,n,m|2+ 2
√
n0q,(+)(zj )Re [aj,n,ma

∗
j,n−1,m]

+ 2
√
m0q,(−)(zj )Re [aj,n,ma

∗
j,n,m−1]. (14)

The normalization factor in equation (12) is simply
∑

n,m |aj,n,m|2.

3. Results

In this section, we present results for a model tunnelling junction where the static barrierV is
a square barrier of heightV0 (zero bias) and where a uniform electric field is applied between
the two electrodes (non-zero bias1V ), i.e. V (z) = V0 + 1V (z/L). The partial and total
transmission amplitudes and currents are considered both when only virtual excitations of the
SP modes are possible, and also when actual excitations occur. Then we present the effect of
the dynamics on the effective electron potential for a given junction geometry. The relation
between these dynamical effects and the tunnelling times of the electron is also examined.
As a parameter that can be deduced from the experiments, we study the evolution of the
apparent barrier height of the junction as a function of the electrode separation. Finally,
in connection with experimental conditions, we discuss the possibilities of observing the
dynamical effects in electron tunnelling.

3.1. Transmission amplitudes

In order to give a qualitative understanding of the difference of behaviour between purely
elastic tunnelling through square barrier and inelastic tunnelling due to the coupling of the
electron with the SP modes, figure 1 represents the transmission amplitudesTnm = |tnm|2 for
the reduced parameter space. We recall thatn andm are the occupation numbers for the even
ωq,(+) and oddωq,(−) modes respectively. Calculations have been done for two different
maximum occupation numbersnmax = 1 and 2. The overall shape of the transmission
amplitudeT00 for the elastic channel is rather similar to the corresponding result obtained
with no coupling to the SP modes inside the barrier. An exponential behaviour of the
transmission amplitude is obtained as expected in the tunnelling regime (E/V0 < 1) and
oscillations characteristic of resonance effects occur for energies above the static barrier
heightV0. However, in the propagating regime (E > V0), T00 is reduced compared to its
values in the absence of coupling to the SP modes because some amplitudes are distributed
not only in the elastic channels but in the inelastic channels as well. It should be noted
that in any case the elastic channel makes the dominant contribution to the transmission in
both tunnelling and propagating regimes. ForE < V0, the results are independent of the
maximum occupation number used in the calculations (compare (a) and (b) in figure 1),
but there are differences in the results at higher energiesE > V0. Indeed, the larger the
energy, the more excitations can be created in the inelastic channels. The number of modes
included should therefore be chosen with great care if one wishes to study the propagating
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Figure 1. Transmission amplitudesTnm (logarithmic scale) versus the electron energyE
calculated for the following set of parameters characterizing the tunnelling junction:V0 = 0.4,
L = 8.0, ωp = 0.5 andq = 0.90. n andm are the occupation numbers for the evenωq,(+) and
oddωq,(−) modes respectively. Calculations have been performed for a maximum occupation per
mode of (a)nmax= 1 and (b)nmax= 2. The transmission amplitudes are presented only for the
channels with the lowest occupation numbers:n,m = (0, 0),——; (1, 0), · · · · · ·; (0, 1), – – –;
and(1, 1),— · —. The dotted line with filled circles in (a) represents the transmission amplitude
obtained for a simple square barrier (i.e. when no electron–SP coupling inside the barrier is
considered).

regime in detail; however, as previously mentioned, we concentrate in the present paper just
on the tunnelling regime and do not discuss the behaviour of the transmission amplitudes
for energies above the barrier height.

Note that, within the tunnelling regime, the values of the transmission amplitudeT00

for the elastic channel arelarger than the corresponding values obtained without the SP
coupling inside the barrier. This behaviour is a signature of the lowering of the tunnelling
barrier due to the interaction between the electron and the SP modes. This effect is also
present in the tunnelling current as we will show below.

3.2. Tunnelling currents

In the present model, the current leaving through the outgoing channels in the right-hand
electrode (or the reflected waves in the left-hand electrode channels) is obtained using

J
{nν }
k→l = 2 Im [a∗k,{nν }βk,lal,{nν }]. (15)

Since only hopping to adjacent sites is considered in equation (3), the current in each channel
of the right-hand electrode (similar expressions can be obtained for the left-hand electrode)
is found to be proportional to the transmission amplitudes:

J
{nν }
R = 2β sin(k{nν }R 1)|t{nν }|2 = 2β sin(k{nν }R 1)|aM,{nν }|2. (16)
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J no SP
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Figure 2. Currents going out to the right versus the energyE for the same set of parameters
as in figure 1. The calculations have been performed for a maximum occupation per mode
of nmax = 2. The currentJ 00

R passing through the right-hand elastic channel is shown (——)
as well as the total current leaving the junction on the rightJ tot

R =
∑
n,m J

nm
R (– – –). The

dotted line with filled circles represents the current obtained for a simple square barrier without
electron–plasmon coupling.

From equation (A12), it is obvious that the non-propagating channels (the corresponding
wave functions have an exponentially decaying behaviour outside the barrier) do not carry
any current, as expected. The current leaving the junction on the right versus the energy
E is shown in figure 2. We have checked that within the range of parameters that we
have studied, the main contribution to the total outgoing currentJ tot

R always comes from
the currentJ 00

R passing through the elastic channel. Non-zero current exists in the inelastic
channels only above the energy threshold corresponding the real excitation of the SP modes.
For example, the currentsJ 10

R , J
01
R and J 11

R are non-zero only forE > ωq,(+), ωq,(−) and
ωq,(+) + ωq,(−) respectively.

Note again that in the tunnelling regime, which is our main focus of interest, the total
currentJ tot

R and the partial currentJ 00
R are always larger than the current calculated without

the coupling to the SP modes. As mentioned previously, this is a manifestation of the
lowering of the tunnelling barrier felt by the electron because of their interaction with the
SP modes. In this regime, the electron–SP interaction exists only via virtual excitation
of those mode since the outgoing channels withnν 6= 0 are not propagating. A detailed
study of the modification of the tunnelling barrier due to the electron–SP mode interaction
is presented in the next section.

3.3. The dynamical effective potential

The dynamical effects in the effective potentialVeff(z, E) given by equations (12) and
(14) are studied for various conditions. For a given geometry of the tunnelling junction,
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Veff(z, E) is calculated for different tunnelling energiesE and different values of the plasmon
frequencyωp = ωs

√
2. These parameters vary the effective time taken by the electron to

tunnel through the barrier and the speed at which the SP modes respond to the presence of
an electron inside the barrier. The results for the effective potential are also compared to
the static effective potentialV stat

eff defined as

V stat
eff (z) = V (z)−

∑
q,α

|0q,α(z)|2
ωq,α

. (17)

V stat
eff is the local, non-energy-dependent, potential felt by an electron interacting with the two

SP modes and held fixed at positionz inside the barrier. This situation corresponds to the
semiclassical limit where the electron is treated as a classical point charge. No dynamical
effects are included in this potential.

By performing explicitly the summation overq andα in equation (17), the exact classical
image potentialVim is obtained [21, 33] as

Vim(z) = V (z)− 1

4L

[
29(1)−9(z/L)−9(1− z/L)] (18)

where9 is the Psi (digamma function). The potentialVim has the classical divergences at
both electrode surfaces; in particular, it can be shown that in the limit of large electrode
separation, (i.e., where the electron ‘interacts’ only with one surface), the classical image
potential takes the usual formVim = V (z) − 1/4z. This can be done by taking the limit
L → ∞ in equation (18), or more easily by performing the summation in equation (17)
with the corresponding asymptotic values forωq,α and0q,α defined by equation (1) and
equation (2) respectively. In the case of the reduced parameter space, i.e., when only one
value ofq is retained,V stat

eff will be different fromVim since the summation overq is not
complete. ThereforeV stat

eff has no divergences at the surface of the electrodes but rather
reflects the exponential behaviour of0q,α(z) for the chosen value ofq as can be seen from
equation (17). However,V stat

eff will differ in principle from the dynamical effective potential
Veff(z, E) because by definitionV stat

eff does not contain any information about the dynamics
of the coupled electron–SP system.

In figure 3 we show the variation of the dynamical effective potential for different values
of the plasmon frequencyωp. As excepted, for a given tunnelling energy, the larger the
plasmon frequencyωp is, the closerVeff(z, E) is to the static effective potential. Indeed, for
largeωp-values, the dynamics of the SP modes is fast enough to build the corresponding
classical image charge of the tunnelling electron. In the other extreme case where the
plasmon frequency is very small, the SP dynamics is so slow that the tunnelling electron
can cross the barrier without ‘feeling’ any modification of the potential. In that case,
Veff(z, E) is almost equal to the nominal static barrierV (z).

The asymmetry with respect to the middle of the tunnelling barrier that can be observed
in the dynamical effective potentialVeff(z, E) is a characteristic of a non-classical treatment
for the electron (by contrast the static effective potentialV stat

eff (z) is symmetric with respect to
the positionz = L/2, as also is the effective potential if the electron is taken as propagating
with a constant velocityv). This behaviour is a signature of the intrinsic asymmetry of the
tunnelling wave functions (for both elastic and inelastic channels) inside the barrier. These
effects have already been pointed out byŠunjíc and co-workers [9] and also observed in
the results of Jonson and co-workers [12].

Figure 4 shows the modifications ofVeff(z, E) when the tunnelling energyE varies.
When the plasmon frequency is fixed, the dynamical effective potential becomes closer to
the static effective potentialV stat

eff (z) for tunnelling energies that approach the top of the
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Figure 3. The effective potentialVeff(z, E) for different values of the plasmon frequency:
ωp = 0.01 (· · · · · ·), ωp = 0.1 (– – –), ωp = 0.5 (——), ωp = 1.0 (— — —), ωp = 1.5
(— · —). The square-barrier height isV0 = 0.4, the tunnelling energyE = 0.25, the barrier
lengthL = 5.0 andq = 1.00. The static effective potentialV stat

eff (z) is also shown (the dotted
line with filled circles). Note that for a given junction geometry,V stat

eff (z) is independent of the
plasmon frequencyωp . The inset shows the convergence of the results versus the maximum
number of quanta considered in each mode (forωp = 0.5 and the same values of the other
parameters):nmax = 1 (——), nmax = 2 (· · · · · ·), nmax = 3 (– – –). Convergence is reached
for nmax

ω = 2; this value is used for all of the results shown in the present work.

nominal static barrierV0. This behaviour is fully consistent with the modifications of the
tunnelling time of the electron with respect to the tunnelling energy (see section 3.4).

There exist different definitions for the tunnelling time inside a barrier and we devote the
next section to this problem. However, even if all of these times have different values for a
given barrier and tunnelling energy, the same trends are observed as far as their dependence
on E is concerned. The tunnelling times always increase when the tunnelling energy
becomes closer to the top of the barrier; this can be interpreted as meaning that the electron
tunnels more slowly as the energyE approaches the top of the barrier. Therefore, for slow
electrons, the SP dynamics is fast enough to build almost the corresponding classical image
charge as illustrated in figure 4, while for fast electrons it is not. Similar results are also
obtained (for a given plasmon frequencyωp and a given tunnelling energyE) by changing
the barrier lengthL. Indeed for decreasing values ofL, the tunnelling time becomes shorter
(as might be expected) and therefore the dynamical effective potential strongly deviates
from the corresponding static effective potential.

In figure 5, we present the modification ofVeff(z, E) due to a negative bias1V applied
to the right-hand electrode. The same trends are observed. The applied bias reduces the
barrier height; therefore the ‘velocity’ of the tunnelling electron decreases andVeff(z, E)
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Figure 4. The effective potentialVeff(z, E) for different values of the tunnelling energy:
E = 0.05 (——),E = 0.20 (– – –),E = 0.35 (— · —), The square-barrier height isV0 = 0.4,
the plasmon frequencyωp = 0.4, the barrier lengthL = 6.0 andq = 1.00. The static effective
potentialV stat

eff (z) is represented by the dotted line.

becomes closer toV stat
eff . This behaviour is particularly apparent on the right of the tunnelling

barrier (i.e.z ≈ L). It should, however, be noticed that the modifications ofVeff are almost
negligible on the left-hand side of the barrier (i.e.z ≈ 0), where the effects of the applied
bias on the nominal static barrier are not important (and especially when the bias is not
too large). The departure ofVeff from V stat

eff that can be observed when1V > E is due to
the fact that the wave function of the elastic channel is no longer behaving like tunnelling
wave functions for 06 z 6 L. The elastic channel wave function becomes oscillatory for
z > L(E−V0)/1V . However, for the case presented in figure 5, the energies corresponding
to the inelastic channels are still below the static barrier. And the results are still converged
for nmax = 2. However, in other cases (for example, that of a larger value for the bias
or that of a smaller barrier length), it might be necessary to enlarge the parameter space
(nmax> 2) to obtain the converged results.

Finally, in a recent paper [34], we studied and compared the values ofVeff(z, E) obtained
by a path integral technique [21] to those obtained with the present matrix method. We
obtained the same trends for the dependence ofVeff(z, E) on the plasmon frequency and/or
the tunnelling energy. However, the values obtained by the path integral technique are
systematically larger than those obtained with the matrix method. We attribute this behaviour
to the semiclassical approximation used to describe the electron motion in the path integral
formalism.

3.4. Tunnelling times

In order to perform a more quantitative study of the concept of ‘slow’- or ‘fast’-tunnelling
electrons introduced in the previous section, we calculate the values of different tunnelling
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Figure 5. The effective potentialVeff(z, E) (——) for different values of a negative bias
1V applied to the right-hand electrode. (a)1V = 0.0, (b) 1V = −0.1, (c) 1V = −0.2,
(d) 1V = −0.4. The nominal square-barrier height isV0 = 0.4, the barrier lengthL = 6.0, the
tunnelling energyE = 0.20, the plasmon frequencyωp = 0.4 andq = 1.00. The static effective
potentialV stat

eff (z) is represented by the dotted line and the static barrierV (z) = V0+1V (z/L)
by the dashed line.

times. There are several ways to define the time taken for a particle to complete a tunnelling
process. One method involves the various ‘phase times’, which are related to the mean
time taken by a tunnelling wave-packet [35]. However, it is a characteristic of tunnelling
problems that the transmission depends exponentially on the energy, and this prevents one
from carrying out a proper limiting process as the wave-packet is made broader and its
spectral range is reduced. It has therefore been argued [36] that it is more physical to
consider the interaction of the tunnelling particle with some local perturbation, present only
in the barrier, and to use the effect that the perturbation has as a measure of the duration
of the particle’s interaction with this perturbation. This approach leads to the Büttiker–
Landauer timeτBL [37, 38] which we consider below. Yet another possibility is derived
from evaluating the tunnelling semiclassically, in which case the amplitude is dominated by
complex ‘paths’ corresponding to classical motion of the particle in the inverted potential
(i.e., to motion in whichE − V is everywhere replaced byV − E) [18, 20, 21]. One
then uses the time associated with this classical motion as the tunnelling time. Another
expression of the traversal time for a tunnelling electron has been proposed by Rudberg and
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Jonson [12]. This time is obtained from a quantity interpreted as the speed of the particle
and appears in the expression of the modified image potential obtained by Jonson from a
self-energy formalism.

Table 1. Values for the tunnelling time proposed by Büttiker and Landauer through the barrier
defined by the effective potentialVeff(z, E). τBL

0 is the tunnelling time corresponding to the
static barrierV (z) = V0+1V (z/L). The other parameters areV0 = 0.4, L = 6.0,1V = −0.2,
ωp = 0.4 andq = 1.0. Atomic units are used.

τBL
0 τBL τBL

0 τBL

E No bias No bias 1V 1V

0.01 8.05 8.64 8.79 9.60
0.05 8.33 8.99 9.20 10.18
0.10 8.74 9.51 9.82 10.92
0.15 9.23 10.16 10.62 11.47
0.20 9.85 11.01 11.70 12.29
0.25 10.65 12.20 — —
0.30 11.73 13.41 — —

In this section, we consider only the tunnelling times proposed by Büttiker and Landauer
and by Rudberg and Jonson. The Büttiker and Landauer tunnelling time is defined as

τBL =
∣∣∣∣ d

dV
ln t (E, V )

∣∣∣∣ (19)

wheret is the complex transmission coefficient andV is the average height of the barrier.
In the present calculations, we use the transmission coefficientt{0} of the outgoing elastic
channel and the derivative with respect to the barrier height is obtained by varying the
heightV0 of the nominal static barrier. The results obtained for a given set of parameters
are listed in table 1.

Table 2. Values for the tunnelling time proposed by Rudberg and Jonson through the
effective potentialVeff(z, E). τ90 is the tunnelling time corresponding to the static barrier
V (z) = V0 +1V (z/L). The other parameters used are the same as in table 1.

τ90 τ9 τ90 τ9

E No bias No bias 1V 1V

0.05 8.46 8.91 8.59 8.96
0.10 8.55 8.98 9.18 9.44
0.15 8.91 9.38 10.01 10.11
0.20 9.49 10.04 11.22 11.20
0.25 10.35 11.10 — —
0.30 11.69 12.75 — —

The tunnelling time proposed by Rudberg and Jonson is defined as

τ9 =
∫ L

0

dz

v9(z)
(20)

where v9 is interpreted as the ‘velocity’ of the electron and defined byv9(z) =
|d ln9(z,E)/dz|. Similarly to in the calculations ofτBL, the ‘velocity’ v9 is calculated
from the values of the elastic channel wave-function coefficientsaj,{0} inside the barrier.
The results are shown in table 2.
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In all situations (coupling to the SP modes or not, presence of a bias or not) and as
expected, the tunnelling timesτBL and τ9 increase with increasing tunnelling energyE.
Therefore as mentioned above, the electron tunnels faster when its energy lies well below
the barrier height than when it is close to the barrier height. When the coupling to the SP
modes is introduced, the tunnelling times increase systematically. This is a signature, as
already seen, of the lowering of the dynamical effective potential compared to the nominal
static barrier. However, the values ofτBL and τ9 are always different and, for almost all
tunnelling energies,τ9 appears smaller thanτBL. The time differences between when the
SP coupling is included and when it is not are also always larger for the Büttiker–Landauer
time than for the Rudberg–Jonson time.

Note that the values ofτBL
0 (1V = 0) are slightly different to those obtained from the

analytical expression oft (E, V0) derived for a square barrier (see equation (4.5) in reference
[38]). These differences are due the fact that the Büttiker–Landauer times shown in table 1
are obtained with our matrix method. In this method, the real-space discretization gives
results equal to the exact analytical one only for infinitely small grid spacing. It should also
be mentioned that from the definition ofτ9 , divergent results are obtained whenv9(z) ≈ 0
close to the right-hand electrode. This situation occurs when the tunnelling energyE is
very small.

Although it is possible to calculateτBL andτ9 numerically for (almost) any energyE
when a bias is applied, we do not give results forE > 0.2 in tables 1 and 2. In this range
of energy, one does not have a purely tunnelling behaviour for the wave functions inside
the entire nominal barrier length (06 z 6 L). In this case, the concept of a tunnelling time
becomes rather misleading.

3.5. Apparent barrier height

The results that we presented above are for the dynamical effective potential and for
theoretical entities which are not directly accessible from the experiments. However,
understanding and knowledge of them are essential for an accurate calculation of the current
in a tunnelling junction. In order to make an easier connection with experimental results,
we studied the evolution of the apparent barrier heightφapp versus the barrier length. We
define the apparent barrier height in a common manner [1, 30] (in atomic units):

φapp= 1

8

(
d lnJ tot

R

dL

)2

(21)

whereJ tot
R is the total current coming from all the right-hand outgoing channels.

The evolution ofφapp versus the barrier lengthL is shown in figure 6 for different
plasmon frequencies. All of the curves show a similar behaviour: the apparent barrier
height is constant for large barrier lengths andφapp decreases continuously when the two
electrodes are brought close together. As expected, the values ofφapp(L) are bounded by
the two limiting cases which correspond to the results obtained for a static square barrier
(the dynamics of the SP is not fast enough to respond to the presence of the tunnelling
electron) and for the static image potential characterized by a large plasmon frequency (in
the present caseωp > 12.0).

For large barrier lengthsL, the behaviour of the wave functions close to the surface
electrodes is no longer affected by an increase ofL. Then, the apparent barrier height
comes from the values ofVeff(z, E) close to the middle of the barrier as can be seen in
the insets in figure 6. The apparent barrier height is then equal toV0 − E − 1V/2 (1V
being the applied bias) and does not contain any detailed information about the electron–SP
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Figure 6. The apparent barrier heightφapp versus the barrier lengthL for V0 = 0.4, E = 0.20
and q = 1.00. The calculations have been performed for different plasmon frequencies in
the zero-bias limit:ωp = 0.02 (– – –),ωp = 0.4 (——), ωp = 1.0 (— · —), ωp = 12.4
(· · · · · ·); and for a finite bias1V = −0.05 andωp = 0.4 (— — —). The dotted line with filled
circles represents the apparent barrier height obtained for a simple square barrier (no electron–SP
coupling). The upper inset represents the corresponding effective potentialVeff(z, E) for three
given barrier lengthsL = 6 (——), L = 2 (– – –) andL = 1 (· · · · · ·) in the zero-bias limit
(ωp = 0.4). The lower inset showsVeff(z, E) for the same parameters as in the upper inset but
with the finite applied bias1V = −0.05.

coupling. However, the effects of the SP coupling affect the exponential behaviour of the
wave functions mainly close to the electrode surfaces. Therefore the absolute values of the
current, even for large separationsL, are strongly dependent on the electron–SP coupling
characteristics as can be seen in figure 7. For the set of parameters chosen, the current
values vary according to the plasmon frequency up to more than four times the value of
the current obtained in the absence of coupling to the surface plasmon modes. Figure 7 is
a typical example showing the importance of the role of dynamics of the coupled electron–
surface plasmon system on the current which is not always apparent from the evolution of
the barrier height.

For intermediate and smallL, the apparent barrier decreases continuously to zero which
is, in principle, the signature of the collapse of the tunnelling barrier (i.e. the energyE of the
electron is larger than the maximum ofVeff(z, E) in between the two electrodes). However,
it is interesting to note that even in the case of a simple square barrier,φapp(L) goes to
zero for decreasingL although the barrier height (φ = V0−E) should remain constant for
all electrode separations. This behaviour is due to the fact that the transmission amplitude
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Figure 7. The ratio of the total currentJ tot
R to the currentJ0 obtained for a simple square

barrier versus the barrier lengthL for V0 = 0.4, E = 0.20 andq = 1.00. Calculations have
been performed for different plasmon frequencies in the zero-bias limit:ωp = 0.02 (– – –),
ωp = 0.4 (——), ωp = 1.0 (— · —), ωp = 5.0 (· · · · · ·), ωp = 12.4 (— — —).

T = |t |2 goes continuously toT → 1 whenL → 0 (note thatT is proportional to the
current for a given tunnelling energyE). The corresponding expression forφapp(L) can be
easily obtained from equation (21) for the analytical solution of the square-barrier problem.

When the two electrodes are brought close together, the strength of the coupling between
the tunnelling electron and the surface plasmon modes increases. The increase of the
coupling is more important for the even(+) mode than for the odd(−) mode. Ultimately,
the out-of-phase oscillation (odd mode) of the surface charges vanishes whenL→ 0 which
is the expected behaviour. The apparent barrier height decreases faster in the presence of
coupling to the SP modes. This decrease is due to the two effects mentioned above: (i) the
effective collapse of the potential barrier; and (ii) the increasing (and eventual saturation) of
the transmission amplitude when the electrodes come close together. The detailed analysis
of the evolution ofφapp(L) especially for smallL-values is complex, as it results from a
competition between the strengthening of the matrix coupling elements0q,(±)(z) and the
shortening of the tunnelling times whenL decreases. Note that we have also considered the
evolution of the maximum barrier heightφm(L) = maxz∈[0,L](Veff(z, E)−E). A qualitatively
similar behaviour is obtained forφm(L), i.e. the gradual collapse of the potential barrier
whenL decreases characterizes the decrease ofφm(L). However, since the effects of the
transmission amplitude are not included in the definition ofφm, its modifications versus
the plasmon frequency (for example) are not as important than those ofφapp shown in
figure 6. Furthermore, as expected,φm(L) remains (almost) constant in situations where
the SP dynamics is not fast enough to respond to the presence of the tunnelling electron
inside the barrier.

Finally, it is also interesting to note the close resemblance of our results forφapp(L) to
those obtained by other methods which at first sight appear to contain quite different physics.
For example, the barrier height between two metallic electrodes has been studied within the
local density approximation forjellium surfaces in references [39, 30]. A similar evolution
for the barrier height is observed when the electrodes are brought close together. However,
the physics involved in this work is different from that in the present model, since the overlap
of the charge density on the two sides of the tunnelling junction is treated self-consistently.
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This overlap increases when the electrodes come close together and corresponds to the
gradual collapse of the potential barrier inside the tunnelling gap. This barrier collapsing
is, as mentioned above, is only partially taken into account (in the present results) via
the electron–SP ‘induced’ potential. Although in the model proposed in this paper, the
nominal static barrierV (z) is not calculated self-consistently, the part added to the effective
potential due to the electron–SP coupling includes the dynamical effects of the coupled
system (i.e. the effective potential is energy dependent). This dependence is only taken into
account in the work of references [39, 30] within the local density approximation. Further
work to obtain a more accurate description of the static barrierV (z) will be considered in
the near future.

4. Conclusion

In this paper, we have presented a general approach for studying the coupling between a
single electron and ‘boson fields’ which are represented by a set of harmonic oscillators.
The approach can be used for any nominal static potential barrier, for different harmonic
modes and does not include any local or semiclassical approximation. The method consists
in solving the many-body Schrödinger equation on a real-space grid by mapping the
many-body problem exactly onto a one-body problem with many incoming and outgoing
channels. A propagation matrix technique is used to solve the corresponding one-body
problem. We have studied in particular the coupling of electrons with surface plasmon
modes in model tunnelling junctions. We mainly considered the effects of the dynamics
of the coupled electron–plasmon system on the effective dynamical potential ‘felt’ by the
tunnelling electron. The modifications of the electron effective potential compared to the
static image potential have been interpreted in terms of competition between timescales
(the electron tunnelling times and the characteristic response time of the surface plasmon,
i.e. the inverse of the plasmon frequency). The most important deviations of the effective
dynamical potential from the static image potential are obtained, as expected, for short
tunnelling times (i.e. for small separation between the electrodes or for tunnelling energies
well below the static barrier height) and for small plasmon frequencies. We have also
shown that the apparent barrier height which is often derived from the experiments is not
the best quantity to use in order to characterize the dynamical effects. Instead, the absolute
values of the current are strongly dependent on the dynamics of the electron–plasmon
coupled system. Improvements of the present study would be necessary to consider three-
dimensional systems consisting of planar surfaces or a more realistic STM such as the
tunnelling junction described in reference [32]. It would also be interesting to investigate
(and possibly implement in the present model) the procedure proposed by Grilloet al [40] to
transform delocalized plasmon modes into projected local plasmon modes. This procedure
permits one in principle to reduce the dimensionality of the problem. This possibility is also
promising as regards studying the tip-induced plasmon modes observed in photon emission
experiments by Berndtet al [2]. Finally, it should be noted that the model used in this
paper is a general model by definition. Therefore it is possible in principle to study other
kinds of coupling between electrons and harmonic modes.

Acknowledgment

We are grateful to the Engineering and Physical Sciences Research Council for support
under grants GR/J67734 and GR/K80495.



A dynamical effective potential for tunnelling 3715

Appendix A. The propagation matrix technique

In order to improve the numerical efficiency of the solution of the problem, it is convenient
to consider the propagation of the wave-function coefficientsaj,{nν } through the barrier. For
this, we introduce vectorsaj whose components are the wave-function coefficients on sites
j . The components are classified according to the occupation numbersnν for each harmonic
modeν. In general, forNν different modes, there are(nmax+ 1)Nν components for each
aj -vector if each harmonic mode has the same maximum occupation numbernmax. Then the
propagation of theaj -vectors inside the barrier is given from equation (3) by the following
tight-binding-like matrix equation:

Mjaj = βaj+1+ βaj−1. (A1)

The matricesMj are sparse matrices whose diagonal elements areE − εj −
∑

ν nνων for
the different occupation numbers of each mode. The off-diagonal elements ofMj are
proportional to the electron–SP coupling elements (i.e.

√
1+ nν0ν(zj ) for the upper off-

diagonal and
√
nν0ν(zj ) for the lower off-diagonal elements). For example, in the case

of the two odd and even modesωq,(−) andωq,(+), the matricesMj are of the form (with
nmax= 1)

E − εj
√

10q,(+)(zj )
√

10q,(−)(zj ) 0√
10q,(+)(zj ) E − εj − ωq,(+) 0

√
10q,(−)(zj )√

10q,(−)(zj ) 0 E − εj − ωq,(−)
√

10q,(+)(zj )
0

√
10q,(−)(zj )

√
10q,(+)(zj ) E − εj − ωq,(+) − ωq,(−)

 . (A2)

The aim of the method is to solve equation (A1) inside the barrier knowing the boundary
conditions atj = 0 andj = M. The solution of equation (A1) on the left-hand (j 6 −1)
and on the right-hand (j > M) sides of the barrier (where the electron–SP coupling does
not exist but where the inelastic effects are taken into account) gives the dispersion relation
for the k{nν }L,R numbers in the different channels.

Equation (A1) can be rewritten in the form of a propagation matrix equation [28]
(forward propagation):[

aj+1

aj

]
=
[
β−1Mj −1

1 0

] [
aj
aj−1

]
. (A3)

It is then possible to link the wave-function coefficients from one side of the barrier to those
from the other side. For example in the case of backward propagation, we write[
a0

a1

]
=
[

B11 B12

B21 B22

] [
aM
aM+1

]
=
[
β−1M1 −1

1 0

] [
β−1M2 −1

1 0

] [
β−1M3 −1

1 0

]
. . .

. . .

[
β−1MM−1 −1

1 0

] [
β−1MM −1

1 0

] [
aM
aM+1

]
. (A4)

Then the Schr̈odinger equation can be solved for a particularj -site, for example the site
j = 0 of the barrier:

β−1M0a0 = a1+ a−1 (A5)
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knowing that the wave-function coefficientsaj on sites on the left of the barrier (j 6 −1)
are related to the coefficientsa0 by

aj ≡


eik{0}L 1j + r{0}e−ik{0}L 1j

(
r{nν }

{
e−ik{nν }L 1j

eq
{nν }
L 1j

})
 for j 6 −1. (A6)

({nν} = {0} represents the ground state for all of the harmonic modes, i.e. the occupation
number for each mode equals zero; this state is also called the elastic channel as opposed
to the inelastic channels for which a modesν can be ‘excited’, i.e.nν 6= 0.) The complex
reflection coefficientsr{nν } given by the boundary conditions are

r{0} = −1+ aj=0,{0} and r{nν } = aj=0,{nν }. (A7)

Using equation (A4) to relatea0 to aM andaM to a1 and equation (A6) forj = −1,
one can transform equation (A5) into the following linear system:

(β−1M0− EL − XBY−1
B )a0 = −2i sin(k{0}L 1)


1
0
...

0

 (A8)

where

XB = B21+ B22ER and YB = B11+ B12ER. (A9)

The matricesEL,R are diagonal matrices whose elements are{
eik{nν }L,R 1

e−q
{nν }
L,R 1

}
.

These elements are arranged the same manner with respect to the different SP modes and
occupation numbers as in the wave-function coefficient vectorsaj .

The solution of the linear system equation (A8) gives the values of the wave-function
coefficients at the particular sitej = 0 and this solution can be propagated through the
barrier using equation (A3) and equation (A6) fora−1 to give the complete solution for the
wave functions inside the entire barrier.

There are other ways to solve the problem. For example, the forward-propagation
equivalent of equation (A4) is[

aM
aM−1

]
=
[

F11 F12

F21 F22

] [
a0

a−1

]
(A10)

where[
F11 F12

F21 F22

]
=
[
β−1MM−1 −1

1 0

] [
β−1MM−2 −1

1 0

] [
β−1MM−3 −1

1 0

]
. . .

. . .

[
β−1M1 −1

1 0

] [
β−1M0 −1

1 0

]
. (A11)

Knowing that the wave-function coefficients on the right-hand side of the barrier are
given by

aj ≡
[
t{nν }

{
eik{nν }R 1j

e−q
{nν }
R 1j

} ]
for j > M + 1 (A12)
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with

t{nν } =
{

e−ik{nν }R 1M

eq
{nν }
R 1M

}
aj=M,{nν } (A13)

(the same expression for the elastic and inelastic channels is obtained for the wave-
function coefficientsaj>M and the complex transmission coefficientt{nν } due to the boundary
conditions), the Schrödinger equation for the sitej = M is transformed into the following
linear system:

(β−1MM − ER − XFY−1
F )aM = 2i sin(k{0}L 1)(XFY−1

F F12− F22)


1
0
...

0

 (A14)

where

XF = F21+ F22EL and YF = F11+ F12EL. (A15)

The inversion of the matricesY can be avoided, by using the forward-propagation
matricesF to relatea0 to aM and the backward-propagation matricesB to relateaM to a0.
In these conditions, the linear system to be solved becomes

(β−1MM − ER − XFYB)aM = −2i sin(k{0}L 1)F22


1
0
...

0

 . (A16)

In equation (A16) the matrix inversion ofY is avoided; however, the simultaneous
knowledge of both the backward-propagationB and forward-propagationF matrices is
needed. In certain cases like for a symmetric (with respect to the middlez = L/2 of the
barrier) static potential barrierV (z), these backward-propagation and forward-propagation
matrices are equivalent. This is not the case when a bias is applied to the nominal square
barrier.

The solution of equation (A14) or equation (A16) givesaM . This solution can be
back-propagated through the barrier to give the complete solution for the wave functions
inside the entire barrier. This procedure is in principle strictly equivalent to the forward
propagation of the solutiona0 of equation (A8).

We have compared the results obtained by the present propagation matrix method to
the exact analytic solution for the case of a square barrier (with no coupling to the SP
modes) and to the results obtained by solving the original large linear system described
in the main text. The propagation matrix method gives the same results as the analytic
solution in the limit of very small grid spacing and the same results as for the large linear
system. But the computational times for the propagation matrix method are reduced by at
least an order of magnitude compared to the solution of the large linear system. We also
found that the propagation matrix method ‘propagates’ errors due to the numerical finite
precision. In some cases, especially for wave-function coefficients that have very small
values, the propagation matrix method can lead to incorrect results close to the side of the
barrier where the propagation finishes. These cases correspond to large barrier lengths and
tunnelling energies well below the barrier height. We found that working with quadruple-
precision routines suppresses these problems of instabilities of the algorithm. We have not
found any such problems in the systems presented in this paper.
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[10] Šunjíc M and Marǔsić L 1992Solid State Commun.84 123
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[32] Šestovíc D, Marǔsić L andŠunjíc M 1997Phys. Rev.B 55 1741
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